Jack is working out $844 \div 4$ using a place value chart.

H	T	O
(100)	10	1
100$)$	100	1
100	100	10
100$)$	1	
100	10	1

a) Talk about Jack's method with a partner.
b) Complete the division.

$$
844 \div 4=\square
$$

(2) Use Jack's method to work out these divisions.
a) $525 \div 5=$ \square
c) $840 \div 8=$ \square
b) $636 \div 6=$ \square
d) $903 \div 3=$ \square

3
Eva is working out $844 \div 4$ using a part-whole model.

$844 \div 4=$ \square
4) A ball of string is 848 cm long.

It is cut into 4 equal pieces.
What is the length of one piece of string?
\squareWhitney is using flexible partitioning to divide a 3-digit number.

Could Whitney have partitioned her number another way?
© White Rose Maths 2019

Use Whitney's method to work out these divisions.
a) $585 \div 5=$ \square
c) $648 \div 4=$ \square
b) $672 \div 6=$ \square
d) $847 \div 7=$ \square
(6) Complete the part-whole models and divisions.

$168 \div 4=$ \square
$169 \div 4=$ \square

What is the same and what is different about the calculations? Talk about it with a partner.
(7) Complete the divisions.
a) $258 \div 6=$ \square
\square
b) $623 \div 5=$ \square
d) $824 \div 3=$ \square

Eva has a piece of ribbon
The ribbon measures 839 cm long.
How much ribbon would be left over if she cuts it into:
a) 4 equal pieces

b) 6 equal pieces
\square
c) 8 equal pieces

Can Eva cut the ribbon into equal pieces with no ribbon left over?

Explain your answer.
9) Use 15 counters and a place value chart.
a) Make a number that is divisible by 3
b) Make a number that has a remainder of 1 when divided by 3
c) Make a number that has a remainder of 2 when divided by 3

Create your own problem like this for a partner.

