## Angles in regular polygons

1) The sum of the interior angles of a triangle is $180^{\circ}$.

Split the polygons into triangles to work out the sum of their interior angles. Your lines should not overlap.
The first one has been done for you.
a)


The sum of the interior angles of a pentagon is
b)

c)


The sum of the interior angles of a heptagon is $900^{\circ}$

What do you notice about the number of sides compared to the number of triangles?

Complete the table.

| Shape | Number of <br> sides | Number of <br> triangles | Sum of interior <br> angles |
| :---: | :---: | :---: | :---: |
| quadrilateral | 4 | 2 | $360^{\circ}$ |
| pentagon | 5 | 3 | $540^{\circ}$ |
| nonagon | 9 | 7 | $1,260^{\circ}$ |
| decagon | 10 | 8 | $1,440^{\circ}$ |
| hexagon | 6 | 4 | $720^{\circ}$ |
| octagon | 8 | 6 | $1,080^{\circ}$ |
| dodecagon | 12 | 10 | $1,800^{\circ}$ |

Compare answers with a partner.

Dani is working out the sum of the interior angles of a polygon. Here are her workings.


Do you agree with Dani? No $\qquad$
Explain your answer.

Rosie, Amir and Eva are drawing polygons.
a)


Rosie

## What polygon has Rosie drawn?

$\qquad$
b)


What polygon has Amir drawn?
c)


## What is the sum of the interior angles of Eva's polygon?

Each compound shape is made up of regular polygons.
Work out angle $y$ in each case.
a)

d)


$$
y=150^{\circ}
$$

$$
y=48^{\circ}
$$

b)

e)

c)

f)


$$
y=75^{\circ}
$$

$$
y=27^{\circ}
$$

